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Summary: At -75'C only the signals of the conformation with axial t-butyl group 

are detected in the 13 C-NMR spectrum of 89-t-butyl-cis-decahydroquinoline. Of 

the N-methyl derivative 62% exist in the analogous form at -8O'C. 

Axially t-butyl substituted cyclohexane rings are hardly ever observed if 

the molecule has the chance to avoid the resulting strain by adopting different 

conformations, A single crystal refraction analysis of a cyclohexylidene deriva- 

tive with such a group has been reported, 1 The predominant conformation of trans 

1,2-di-t-butylcyclohexane has been calculated to be the diaxially substituted 
2 

one. Recently, the X-ray structure of 1-phenyl-cis-4-t-butyl-r-cyclohexylpipe- 

ridine hydrochloride has shown it to occupy the t-butyl-axial conformation in 

the crystal, but the t-butyl is eauatorial in solution, 3 In the trane-decahydro- 

auinoline system, where ring inversion cannot take place, NMR-data and X-ray an- 

alysis for an axial t-butyl group have been reported in ?P-t-butyl-trans-deca- 

hydroquinoline.4 

The corresponding &s-compound, 86-t-butyl-cis-decahydroauinoline (i) can 

exist in two double chair conformations, A and F (see Scheme 1). In unsubstitu- 

ted cis-decahydroquinoline, A has been found5 to be more stable by 3.8 to 4.4 

kJ mol-I. In t-butylcyclohexane, the preference of the t-butyl Froup for the 

equatorial position has been calculated 2 -1 
to be -20 kJ mol , Compound i might 

thus be expected to exist largely in conformation B, with the trans gauche in- 

teraction between C(CH3)3 and N the determining factor. 

The 13C-NMR data of 3 at +27'C and at -75'C are listed in Table 1. Only one 

set of 11 signals is seen at low temperature, indicating that no second confor- 

mation is present to >3% (ring inversion of the cis-decahydroquinoline system 

is frozen at that temperature 5 ; cf. also 1,"). The calculated chemical shifts of 

conformations LA and JB are also reported, These values were obtained by correc- 

ting the low temperature 13 C shift data6 of compounds 2 (as model for IA) and 2 

(as model for JR) for the shift effects of an equatorial methyl group at C-2 

(a : +5.04 ppm; 8,: +7.69 ppm; 7 other effects were neglected). A comparison of 

thz -75'C shift values of l_ with 2 and 2 show that the signals must belong to 

l_A, with axial t-butyl group, and not to AP. While the assignments of a number 

of signals might be exchanged, carbon atoms C-2, C-R and C-10 could be assigned 
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Scheme 1 
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unambiguously because of their 

nance decoupled spectrum. Each 

coPformation AR, 

A :F OC AGO (kJ mol-') 

>97 <3 -75 c-5.7 

62 3A -80 -0.8 

>99 Cl -70 c-7.8 

<2 >9p -65 >+h.7 

position and their appearance in the off-reso- 

of these sipnals allows definitely to exclude 

Additional evidence comes from the 'P-FWR spectrum, The siFr?als of the pro- 

tons at C-2 appear at nearly the same position as in cis-decahydroquinoline 

and show the same coupling pattern (R2 = H: 2.98 ppm; d, 12, of m; R3 = F: 2.64 

ppm; d, 12, of d, 10, of d, 3). The hydrogen atom at C-9 (at 2.75 ppm) shows a 

narrow sipnal (apparent triplet, J q 3.2) due to the small pauche couplings 

with the protons at C-8 and C-10, whereas in conformation F a large (anti) coup. 

line must lead to a broad resonance, The coupling behaviour of these protons is 

also indication for larpely undisturbed chair conformations of the two rings : 

any major deformation should lead to an ircreased couplinp for F-9. 

The reason for the preference for &A must be seen in a severe interaction 

between the t-butyl group and the nitropen in conformation F. Assuming undis- 

turbed geometry of the cis-decahydroouinoline ring system, this interaction 

must amount to >22 kJ mol-' to offset the calculated preference for $P (30 - 

4 kJ mol-I) and explain the observed result (see Scheme 1). 

The room temperature 13C-NM? spectrum of the N-methyl derivative of ,& (@j ) 

shows only seven sharp signals. If the probe temperature is raised to +60°C, 

resonances for all twelve different carbon atoms are ohserved, with three of 

them still broadened. At -75'C signals for hoth conformations &PA and ,QR are 

detected; integration of the areas of matchinp peaks gives a ratio of 62 + 2 % 
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Table 1. '3 C-NMR Chemical Phifts a 

C-Atom 4 (AtF)b ,&A 2 ,&A calcd ,&P calce ,Q (A=F)L @A e &RR g 

2 

3 

4 

5 

6 

7 

8 

9 

10 

quart. 

CH3 

46.59 

22.91 

29.30 

24.48 

21.61 

22.55 

50,z3 

57.21 

32~3~ 

33.46 

~8.5~ 

47.97 48.@R 3P.26 

21.25 21.33 2h.73 

29.56 29.77 24s2 

22.00 23.24 31.J2 

20.74 21.83 20.84 

20.gg 20.46 27.30 

52.01 51.24 39.67 

56d7 56n43 57.3, 

30.5, 30.0, 37.05 

33.4, 33.64 32.6, 

28.30 2fL5, 28.64 

51.3 h 

z&91. 

29.271 

28.3, 

~1.8~ 

25.8 i 

42.20 

64.60 

30.38 

33.7, 

29.22 

59.30 46.1~ 

21.00 19.95 

29.86 ~6.1~ 

24.48 32J7 

21.z3 21.46 

21.78 ~8.2~ 

4Z.Z4 40.2~ 

64.99 63.~~ 

31.14 27.94 

33.46 33.38 

29.4, 28.67 

2 In ppm; solvent CDCl 

ded at 62.89 MHz. b _t 
3 

+ 2% Me4Si at the temperatures indicated. Recor- 

+27'C. -7oOc. 

-65'C. r 

2 At -75'C. 2 From 2 at 2 From 2 at 

At t60°C because signals were too broad at ambient temperature, 

B At -80'~. h Signal still very broad, 1 Signal still broad. 

@A, 38 + 2 % J$P, In the 'H-NMR spectrum, the single resonance for N-CH3 at 

+6C°C (2.37 ppm) is split into two singlets at -75'C for the axial methyl of 

,JJJF (2.49 ppm) and the equatorial one of @A (2.28 ppm). The peaks are superim- 

posed on other resonances, but the ratio is s3 : 7. That @A is the major con- 

former is clear from the resonarces of C-2 in the low temperature 13C-spectrum, 

and from the chemical shift (3.01 ppm) and coupling (d, 10, of IF) of the equa- 

torial proton at C-2 (R2 = H) in ,JQA. 

It is surprising that the eouilibrium in & is less in favor of conformati- 

on A compared to A, The conformational eouilibrium at nitrogen in N-methylpipe- 

ridine has been determined 10 kJ mol -' (in CHC13) in favor of the methyl-equa- 

torial conformer, 8 Bince the methyl group on nitrogen in REP is forced into an 

axial position to avoid the more serious interaction with the t-butyl, the equi- 

librium for & might have been expected to be more on the side of conformation 

A than in 5, as was the case in the analogous 8B-methyl compounds, 5a,9 The re- 

sult can be rationalized by assuming some deformation of the cyclohexane ring 

in @A due to an outward bending of the t-butyl group. 5b This could increase the 

interaction between C-8 and the N-methyl group (which cannot be avoided except 

by the methyl becoming syn-axial to C-5 and C-7), thus destabilizing ,&A, Alter- 

natively (but less likely), the deformations caused by the equatorial t-butyl 

in &B might cause the N-methyl-axial interaction to be smaller than in N-me- 

thylpiperidine. To get evidence for either argument, attempts will be made to 

obtain X-ray analyses of the picrates of 5 - 2 and & - 2~. 
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Compounds investigated : ,& was obtained by equilibration of N-nitroso-RB-t-bu- 

tyl-trans-decahydroquinoline 10 with potassium-t-butoxide in DMSO at +90°C to 

give N-nitroso-8B-t-butyl-cis-decahydroquinoline (mp 77-79'C), which was deni- 

trosated by bubbling dry hydrogen chloride through the solution in anhydrous 

benzene boiling to reflux. Mp of picrate 171-173°C. Methylation with FCHO / 

HCOOH gave 4~; mp of picrate 162-163’C. Compounds 2 and 2 have been reported. 11 

Variable temperature NMR spectra were recorded on a Fruker WM 250 spectrometer, 

purchased under grant Nr. 4009 of the F.2.F.d.w.F. 

Financial support of this work by the F.2.F.d.w.F. (grants Nr. 3241 and 4284) 

is gratefully acknowledged. 
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