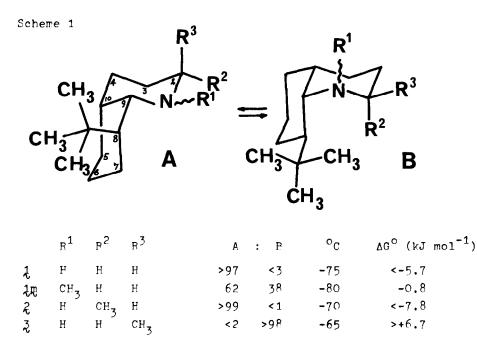
PREFERENCE FOR A CONFORMATION WITH AXIAL t-BUTYL GROUP : 8β-t-BUTYL-cis-DFCAHYDROQUINOLINE Friedrich W. Vierhapper

Institut für Organische Chemie, Universität Wien A-1090 Wien, Austria


<u>Summary</u>: At -75° C only the signals of the conformation with axial *t*-butyl group are detected in the ¹³C-NMR spectrum of 8β -*t*-butyl-*cis*-decahydroquinoline. Of the N-methyl derivative 62% exist in the analogous form at -80° C.

Axially t-butyl substituted cyclohexane rings are hardly ever observed if the molecule has the chance to avoid the resulting strain by adopting different conformations. A single crystal refraction analysis of a cyclohexylidene derivative with such a group has been reported.¹ The predominant conformation of trans 1,2-di-t-butylcyclohexane has been calculated to be the diaxially substituted one.² Recently, the X-ray structure of 1-phenyl-cis-4-t-butyl-r-cyclohexylpiperidine hydrochloride has shown it to occupy the t-butyl-axial conformation in the crystal, but the t-butyl is equatorial in solution.³ In the trans-decahydroouinoline system, where ring inversion cannot take place, NMR-data and X-ray analysis for an axial t-butyl group have been reported in 8β -t-butyl-trans-decahydroquinoline.⁴

The corresponding *cis*-compound, 8β -t-butyl-*cis*-decahydroquinoline (1) can exist in two double chair conformations, A and P (see Scheme 1). In unsubstituted *cis*-decahydroquinoline, A has been found⁵ to be more stable by 3.8 to 4.4 kJ mol⁻¹. In t-butylcyclohexane, the preference of the t-butyl group for the equatorial position has been calculated² to be ~20 kJ mol⁻¹. Compound 1 might thus be expected to exist largely in conformation B, with the trans gauche interaction between C(CH₃)₃ and N the determining factor.

The 13 C-NMR data of 1 at +27°C and at -75°C are listed in Table 1. Only one set of 11 signals is seen at low temperature, indicating that no second conformation is present to >3% (ring inversion of the *cis*-decahydroquinoline system is frozen at that temperature⁵; cf. also 1m). The calculated chemical shifts of conformations 1A and 1B are also reported. These values were obtained by correcting the low temperature 13 C shift data⁶ of compounds 2 (as model for 1A) and 3 (as model for 1B) for the shift effects of an equatorial methyl group at C-2 (α_e : +5.04 ppm; β_e : +7.69 ppm;⁷ other effects were neglected). A comparison of the -75°C shift values of 1 with 2 and 3 show that the signals must belong to 1A, with axial t-butyl group, and not to 1F. While the assignments of a number of signals might be exchanged, carbon atoms C-2, C-8 and C-10 could be assigned

5161

unambiguously because of their position and their appearance in the off-resonance decoupled spectrum. Each of these signals allows definitely to exclude conformation 1B.

Additional evidence comes from the ¹H-NMR spectrum. The signals of the protons at C-2 appear at nearly the same position as in *cis*-decahydroquinoline and show the same coupling pattern (R^2 = H: 2.98 ppm; d, 12, of m; R^3 = H: 2.64 ppm; d, 12, of d, 10, of d, 3). The hydrogen atom at C-9 (at 2.75 ppm) shows a narrow signal (apparent triplet, J = 3.2) due to the small gauche couplings with the protons at C-8 and C-10, whereas in conformation P a large (anti) coupling must lead to a broad resonance. The coupling behaviour of these protons is also indication for largely undisturbed chair conformations of the two rings : any major deformation should lead to an increased coupling for H-9.

The reason for the preference for 1A must be seen in a severe interaction between the *t*-butyl group and the nitropen in conformation B. Assuming undisturbed geometry of the *cis*-decahydroauinoline ring system, this interaction must amount to >22 kJ mol⁻¹ to offset the calculated preference for 1B (20 -4 kJ mol⁻¹) and explain the observed result (see Scheme 1).

The room temperature 13 C-NMR spectrum of the N-methyl derivative of 1 (1m) shows only seven sharp signals. If the probe temperature is raised to $+60^{\circ}$ C, resonances for all twelve different carbon atoms are observed, with three of them still broadened. At -75° C signals for both conformations 1mA and 1mB are detected; integration of the areas of matching peaks gives a ratio of 62 ± 2 %

Table 1.	$^{13}C-NMR$	Chemical	Shifts	<u>a</u>
----------	--------------	----------	--------	----------

C-Atom	ϟ (A = P) ^b	t ^{a ⊆}	lA calc₫	<mark>l</mark> β calc [≞]	$4\pi (A = P)^{f}$	18a g	१ए ^в ^ह
2	46.50	47.97	48.0 ₈	38.2 ₆	51.3 <u>h</u>	59.30	46.15
3	22.91	21.25	9	26.73	^{20,9} 1,	-	19.95
ц	29.3 ₀	29.56	29.77	24.92	29.2 ¹	29.86	
5	24.48	22.0 ₀	23.24	31.42	28.3		32.17
6	21,61	20.74	21.83	20.84	21.82.	21.23	
7	22.55	20.90	20.46	27.30	25.8 ⁻¹	21.78	
8	50,2 3	52.01	51.24	39.67	42.20	42.24	40.29
9	57.21	56.6 ₇	56.43	57.31	64.6 ₀	64.99	
10	32.39	30.50	30.00	37.05	30.38	31.14	
quart.	33.46	33.40	33.64	32.61	33.70	33.46	33.38
СНЗ	28.57	28.3 ₀	28.51	28.6 ₄	29.22	29.4	

 $\frac{a}{2}$ In ppm; solvent CDCl₃ + 2% Me₄Si at the temperatures indicated. Recorded at 62.89 MHz. $\frac{b}{2}$ t +27°C. $\stackrel{c}{-}$ At -75°C. $\stackrel{d}{-}$ From 2 at -70°C. $\stackrel{e}{-}$ From 3 at -65°C. $\stackrel{f}{-}$ At +60°C because signals were too broad at ambient temperature. $\frac{g}{2}$ At -80°C. $\stackrel{h}{-}$ Signal still very broad. $\stackrel{i}{-}$ Signal still broad.

mA, 38 ± 2 % mB. In the ¹H-NMR spectrum, the single resonance for N-CH₃ at $+60^{\circ}$ C (2.37 ppm) is split into two singlets at -75° C for the axial methyl of mE (2.49 ppm) and the equatorial one of mA (2.28 ppm). The peaks are superimposed on other resonances, but the ratio is ~ 3 : 7. That mA is the major conformer is clear from the resonances of C-2 in the low temperature ¹³C-spectrum, and from the chemical shift (3.01 ppm) and coupling (d, 10, of m) of the equatorial proton at C-2 (R² = H) in mA.

It is surprising that the equilibrium in \mathfrak{M} is less in favor of conformation A compared to \mathfrak{l} . The conformational equilibrium at nitrogen in N-methylpiperidine has been determined 10 kJ mol⁻¹ (in CHCl₃) in favor of the methyl-equatorial conformer.⁸ Since the methyl group on nitrogen in \mathfrak{MP} is forced into an axial position to avoid the more serious interaction with the *t*-butyl, the equilibrium for \mathfrak{M} might have been expected to be more on the side of conformation A than in \mathfrak{l} , as was the case in the analogous 86-methyl compounds.^{5a,9} The result can be rationalized by assuming some deformation of the cyclohexane ring in \mathfrak{MA} due to an outward bending of the *t*-butyl group.^{5b} This could increase the interaction between C-8 and the N-methyl group (which cannot be avoided except by the methyl becoming syn-axial to C-5 and C-7), thus destabilizing \mathfrak{MA} . Alternatively (but less likely), the deformations caused by the equatorial *t*-butyl in \mathfrak{MB} might cause the N-methyl-axial interaction to be smaller than in N-methylpiperidine. To get evidence for either argument, attempts will be made to obtain X-ray analyses of the picrates of $\mathfrak{L} - \mathfrak{Z}$ and $\mathfrak{MR} - \mathfrak{MR}$. Compounds investigated : 1 was obtained by equilibration of N-nitroso-88-t-butyl-trans-decahydroquinoline¹⁰ with potassium-t-butoxide in DMSO at +90°C to give N-nitroso-88-t-butyl-cis-decahydroquinoline (mp 77-79°C), which was denitrosated by bubbling dry hydrogen chloride through the solution in anhydrous benzene boiling to reflux. Mp of picrate 171-173°C. Methylation with HCHO / HCOOH gave 1m; mp of picrate 162-163°C. Compounds 2 and 3 have been reported.¹¹ Variable temperature NMR spectra were recorded on a Bruker WM 250 spectrometer, purchased under grant Nr. 4009 of the F.z.F.d.w.F.

Financial support of this work by the F.z.F.d.w.F. (grants Nr. 3241 and 4284) is gratefully acknowledged.

References and Footnotes

- 1. F. Johnson, S.W. Zito, R. Sarma and P.M. McKeever, Tetrahedron Lett., 753 (1978).
- B. van de Graaf, J.M.A. Baas and P.M. Wepster, Recl. Trav. Chim. Pays-Bas, 97, 268 (1978).
- 3. P. Geneste, J-M. Kamenka, R. Roques, J.P. Declerq and G. Germain, Tetrahedron Lett., 22, 949 (1981).
- 4. a. F.W. Vierhapper and E.L. Eliel, J.Org. Chem., 44, 1081 (1979);
 b. K.D. Hargrave and E.L. Eliel, Tetrahedron Lett., 1978 (1979); Isr.J.Chem. 20, 127 (1980).
- 5. a. F.W. Vierhapper and E.L. Eliel, J.Org. Chem., 42, 51 (1977);
 b. H. Booth and D.V. Griffiths, J.C.S. Perkin II, 842 (1973).
- 6. The low temperature values were used because tangible shift changes for 3 going from +60 to +35 to -65°C indicate that this compound is not completely in form P at room temperature.
- Obtained by comparison of 28-methyl-trans-decahydroquinoline with transdecahydroquinoline : E.L. Eliel and F.W. Vierhapper, J.Org. Chem., 41, 199 (1976).
- 8. P.J. Crowley, M.J.T. Robinson and M.G. Ward, Tetrahedron 33, 915 (1977).
- 9. Force field calculations led to a different result for N,8β-dimethyl-cisdecahydroquinoline (S. Profeta, Jr., Ph.-D.-Dissertation, University of Georgia, Athens, Ga., 1978), but the data of ref. 5a have been confirmed by ¹H- and ¹³C-low temperature NMR (F.W.Vierhapper, unpublished results).
- 10. F.W. Vierhapper, J.Org.Chem., 45, 3111 (1980).
- 11. F.W. Vierhapper, E.L. Eliel and G. Zúniga, J.Org. Chem., 45, 4844 (1980).

(Received in Germany 3 September 1981)

5164